App Builder

The app-builder tool assists us in developing and building a containerized App that can be installed
using the App Center. In summary, the tool takes an App definition file as input and from this builds a
package that the App Center can use to install the App. How to build the actual container images used
by the App is not in the scope of this document and basic knowledge about how to work with container
images is expected.

« App Builder
o Prerequisites
o A simple example
o The Sandbox repository

o Detailed command line usage
= Commands for updating the App repository
= Commands for running_Apps
« Commands for getting_status about Apps
« Commands for bundling_an App

o App_definition file

=« App metadata

= Specifying_prerequisites

= Consuming_and providing APIs from contracts

= Using_the client credentials flow

= Registering_a client for the authorization code flow

« Working_with Kafka topics
« Using_a PostgreSQL database
= Working_with persistent storage
= Replicating_service workloads
= Specifying_App resources
= CPU
= Memory
= GPU

= Routing_ingress to service

= Importing_a Grafana dashboard

= Collecting metrics from a container using Prometheus
« Extending_client applications with Microfrontends

« Environment variables and command line arguments

= App values

o Custom definitions

Prerequisites

To run the app-builder, we must have Docker installed. If running on Windows, we can use Docker
Desktop and for Ubuntu or other Linux variants we can use the standard channels to install it. The
actual app-builder tool is available as both a power-shell script (app-builder.psl) for Windows and a
bash script (app-builder.sh) for Linux. You can download it from here:
https://doc.developer.milestonesys.com/appen/?path=App-Builder

A simple example

https://www.docker.com/products/docker-desktop/
https://www.docker.com/products/docker-desktop/
https://doc.developer.milestonesys.com/appen/?path=App-Builder

To introduce the app-builder, it is best to look at a simple example. Building an App always starts with
creating an App definition file. It is a YAML file and below is shown an example of how a very simple
App can be defined.

name: "most-simple-app"

realm: "my-realm"

version: 1.0.0

description: "The most simple App you can make"

prerequisites:
systemVersion: ">=0.3.9"

services:
- name: pub-my-realm-my-service
routes:
- name: my-route
port: 80
targetPort: 80
containers:
- name: my-container
image: sandbox.io/hello-world/webserver:1.2.2

In summary, we define an App named most-simple-app which has one service called pub-my-
realm-my-service . The service will run the container image sandbox.io/hello-
world/webserver:1.2.2 and expose port 80 through which other services in the system can access it
using hostname pub-my-realm-my-service . It is worth mentioning here that the service names are
governed by a strict naming convention which you can read more about in the section describing_the

app-definition file.

Given the above App definition file, we can now build the App using the app-builder tool.
./app-builder.sh -f most-simple-app.yaml

This will generate a file in the current directory named most-simple-app-1.0.0.tgz . To make the
App show up in the App Center, this file must be published to one of the repositories that the App
Center is configured to use. The public repositories should not be used until the App is tested and
approved so we need some other repository where we can put it while we are developing and testing
the App. This is what the Sandbox repository is for.

The Sandbox repository

The sandbox provides an internal repository deployed on the same system as the App Center itself. It
is only available if enabled specifically and should not be so for any production environment. In this
section we will look at how to push an App to the sandbox repository and thereby making it visible to
the App Center.

Before being able to push an App to the sandbox repository, we must first login to the system. This is
done by running the app-builder with the login command.

./app-builder.sh login

With this in place, we can now push the App we built earlier with the push command

./app-builder.sh -f most-simple-app.yaml push

This will only push the App itself (its definition) and not the containers it is referring to. In the example
above, the App refers to one container image named sandbox.io/hello-world/webserver:1.2.2 .
To push this container to the sandbox, we must tag our locally built container image with [system ip
/ hostname] :5000/sandbox.io/hello-world/webserver:1.2.2 and then run the docker push
command. By default, Docker does not accept insecure registries, and we therefore have to add the
following lines to the Docker Daemon configuration and restart the service.

"insecure-registries": [
"[system ip / hostname]:5000",

At this point, we should be able to go to the App Center, find the App and install it.

Detailed command line usage

Let us take a look at some of the other commands that the app-builder supports. Below is listed the
complete usage of the app-builder tool. Here we have already seen the build , login and push
commands in action.

App Builder - Building your own App for the App Center

Usage: app-builder [options] <command>

Options:
-h This message
-f <file> App YAML definition file to use; default is app-definition.yaml

-c <directory> Directory with custom definitions; default is the YAML definition
file without file extension

-0 <directory> Directory to store packaged Helm Chart of App; default is current
directory

-r <url> Repository from which to fetch app-registation helm chart;
default is https://horizonsystem.azurewebsites.net/system
-n Non-interactive mode for build pipelines; default is false. When

true, no interactive prompts are shown

Commands:
build Build App as Helm Chart (the default command)
login Login to to system and remember credentials for later use
logout Logout from system and forget stored credentials
dashboard Expose Kubernetes Dashboard through localhost

dashboard-create-token Create new token allowing you to login to the Kubernetes
Dashboard

list List Apps currently in sandbox repository

push Push App to sandbox repository

https://docs.docker.com/engine/daemon/

remove Remove App from sandbox repository

install-from-file Install App from local file

install-from-repo Install App from sandbox repository

uninstall Uninstall App

restart Restart all containers deployed by App and pull new images
before starting them again

status Show status of all containers deployed by App

events Show events related to deployment of App

volumes Show volumes used by App

bundle Bundle App including container images together in one

archive file

Commands for updating the App repository

Above, we saw how to use the push command to upload an App to the sandbox repository. If the App
already exist in the sandbox repository, it will be removed first. Pushing an already existing App will
thus produce output as shown below.

{"deleted":true}
{"saved":true}

To explicitly remove an App from the repository, we can use the remove command and we will see
output like this.

{"deleted":true}

Commands for running Apps

Instead of using the App Center to install an App, we can also do it directly with the app-builder tool.
There are two commands available for this. The first one is install-from-file which will install the
App from the generated output file directly. Here is example output from running this command.

Installing /root/out/most-simple-app-1.0.0.tgz to system at 10.10.16.34
Release "most-simple-app" does not exist. Installing it now.

NAME: most-simple-app

LAST DEPLOYED: Mon Mar 3 12:04:40 2025

NAMESPACE: most-simple-app

STATUS: deployed

REVISION: 1

TEST SUITE: None

Here, the input file most-simple-app-1.0.0.tgz is the App that was built using the build
command. By default it is saved to the current directory and is also read from here by default when
using the install-from-file command. We can change the default directory by specifying the -o
option.

The second way to install an App using the app-builder is to use the install-from-repo command.
This one will install the App from the sandbox repository and thus requires it to be uploaded first with
the push command. It will generate similar output as shown above.

To get a list of all Apps that has been pushed to the sandbox repository, we can use the list
command. The output will be YAML formatted with each global key being the name of an App.

most-simple-app:
- apiVersion: v2
appVersion: 1.0.0
created: '2025-03-03T13:08:17.355513209Z"'
dependencies:
- name: app-registration
repository: https://horizonsystem.azurewebsites.net/system
version: 1.7.0
description: The most simple App you can make
digest: a382eal3b546f859bace3ba74e4e63554ccbeb6ff289cf2d181f7459ded7ffac9
name: most-simple-app
type: application
urls:
- charts/most-simple-app-1.0.0.tgz
version: 1.0.0

When an App is installed, it will instruct the system to pull the needed images from the container
registry and run them. We can at any time restart all running containers using the restart
command. For every service provided by the App, we will see an output line similar to the following

pod "my-service-857dc79c5b-csghm" deleted

Behind the scenes, the container (pod) running the service is deleted, but since the App definition
declares that it must be running, it is automatically restarted by the container orchestration
framework. One useful side-effect of running the restart command is that all container images that
have changed will be re-pulled from the container registry.

Finally, uninstalling the App, is also possible with the uninstall command.

Commands for getting status about Apps

If things are not working as expected, then it can be useful to get more detailed information about the
current status of an App. The status command will for each service of the App show if it is currently
running, and if so, for how long and how many restarts have been made. The output could look like
this.

NAME READY STATUS RESTARTS AGE IP NODE
my-service-857dc79c5b-zbjcc 1/1 Running 0 12m 10.1.27.8 dkws-
vt02-05

If a service is not starting as expected, then the events command can be useful. It will show all

events related to getting the App up and running. If e.g., a container image could not be pulled, then

this will show up here. Below we see output from the events command notifying us that the image
sandbox.io/hello-world/webserver:1.2.3 could not be pulled.

LAST SEEN TYPE REASON OBJECT MESSAGE
4m41ls Normal BackOff pod/my-service-55c6f6f459-sj5fs Back-off pulling

image "sandbox.io/hello-world/webserver:1.2.3"
4m41ls Warning Failed pod/my-service-55c6f6f459-sj5fs Error:
ImagePullBackOff

For services using volumes for persistent storage, the volumes command will list all active volumes
and where they are physicially located on disk. The example output below shows that my-volume is
bound to the directory /pool/media/2 on server with hostname dkws-vt02-06 .

{
"volume": "my-volume-pvc",
"hostname": "dkws-vt02-06",
"path": "/pool/media/2",
"class": "media",
"phase": "Bound"

}

If more details are needed about the status of an App (like log files) or the system as a whole, we can
use the dashboard command to run the Kubernetes Dashboard. When running this command, the
dashboard will be made available through https://localhost:10443 until we press Ctrl+C to break the
command. Note that this only works if the system is setup with the developer option enabled. If not,
the Kubernetes Dashboard is not installed in the system.

Commands for bundling an App

Once an App is working and it is ready for going into a Milestone hosted repository, the bundle
command can be used to create one file containing both the App definition and all referred container
images. This bundle can then be sent to Milestone for verification and if approved it will be made
available in the approriate Milestone hosted repository.

App definition file

In this section we will take a closer look at the App definition file. We already saw a simple example
earlier that looked like this

name: "most-simple-app"

realm: "my-realm"

version: 1.0.0

description: "The most simple App you can make"

prerequisites:
systemVersion: ">=0.3.9"

services:
- name: pub-my-realm-my-service
routes:
- name: my-route
port: 80
targetPort: 80
containers:

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://localhost:10443/

- name: my-container
image: sandbox.io/hello-world/webserver:1.2.2

This is a very minimal App definition file which exposes a service named pub-my-realm-my-service .
There is a strict naming convention for service names, which the app-builder enforces. The name can
be divided into three parts following this pattern [pub-]<realm>-<name> . In the above example the
parts would be pub , my-realm and my-service . The first part is optional and will if present always
be pub . This signifies that the service is public and can be reached by any other service in the
system. Had we changed the name in the example above to my-realm-my-service , then this service
would only be accessible from other services within the same rea/m as the App itself. The realm of an
App is specified using the top-level property named realm and this value must always match the
realm part of the service name. The third part, which in the example is my-service , is a descriptive
but unique name of the service within the given realm.

In the following sections, we will now look at how we can extend this simple example in different ways.

App metadata

We have already seen how we can specify a name , realm, version and description of an App.
Each of these are mandatory fields and the app-builder will fail if they are not explicitly defined.
Optional metadata fields are license , readme and changelog as illustrated below.

license: "MIT License"
readme: |
Overview
This is an app that shows the hello world message
in a web package.
changelog: |
[1.0.0] - 2025-02-25
First version.

The license field should be set to the name of the license that applies to the App. We can use any
text that identifies the license in use whether it is open source or commercial. The readme field is
text which in details explain why the App is useful, what can be done with the App, and how it is used.
This is in contrast to the description field that we saw earlier, which is expected to be a single line
describing the App. The changelog field must be a curated, chronologically ordered list of notable

changes for each version of the App. Both the readme and changelog fields can be specified using
Markdown syntax.

Specifying prerequisites

In the simple example, we saw how to specify a prerequisite on the system version using the

systemVersion field. When the App is installed, it will be checked that the running system fulfills the
version requirement and fail if not. Thus, it might be necessary to upgrade our system before a given
App can be installed.

While the systemVersion is a required field, there are also two optional prerequisites that we can

provide. These are for system services and other Apps. Below is shown an example that illustrates
both.

prerequisites:
systemVersion: ">=0.3.1"

https://www.markdownguide.org/

systemServices: ["kafka", "fuseki"]
apps:
- name: "another-app"
version: ">=1.6.2"
- name: "yet-another-app"
version: ">=1.2.0"

In this example, we use the systemServices field to specify that the App must have both Kafka and
Fuseki installed to function. We don't provide a specific version for these since this is indirectly implied
by the given systemVersion . Another possible prerequisite that the App can define is for other Apps
to be already installed. In the example above we e.g., require another-app in at least version

1.6.2 to be already installed. When installing an App through the App Center, the required system
services and App dependencies will be automatically installed.

Consuming and providing APIs from contracts

An API contract serves as a formal agreement outlining how different services should interact with
each other. The agreement defines rules, specifications, and expectations for data exchange,
functionality, and communication. When an App depends on the APIs of a contract, we say that it
consumes the APIs of the contract. Likewise, when an App is implementing the APIs of a contract, we
say that is provides the APIs of the contract. We express this relationship by adding an apis section
to the app definition file. An example is shown below.

apis:
consumes:
- name: my-realm.other-api-contract
version: ">=1.1.2"
provides:
- name: my-realm.my-api-contract
version: "1.4.7"

Here the App consumes APIs from the contract named other-api-contract in version =>1.1.2 .
The example also specifies that the App provides the APIs of the contract named my-api-contract
in version 1.4.7 . The version scheme used is Semantic Versioning_2.0.0. For comparing versions, the

semverCompare function is used which you can read more about here.

Note, that before installing an App, it will be checked if the consumed APIs are made available by an
already installed App. If not, the installation will fail.

Using the client credentials flow

Often, an App will implement a service which will need access to other services in the system without
a user being directly involved. For authorizing this kind of service to service communication, the
recommended approach is to use the OAuth 2 Client Credentials Flow. The first step in this flow is to
get our App registered with the XProtect Identity Provider. This is done by adding the following top-
level section to the App definition file

credentials:
clientCredentialsFlow:
clientName: "app-using-client-credentials-flow"
clientScopes: ["managementserver"]

https://kafka.apache.org/
https://jena.apache.org/documentation/fuseki2/
https://semver.org/
https://helm.sh/docs/chart_template_guide/function_list/#semvercompare

For the registration we must provide a descriptive clientName and a list of clientScopes
identifying which scopes our App will need access to. When the App is installed, it will now
automatically be registered as a client with the XProtect Identity Provider. Below we will refer to the
XProtect Identity Provider as simply the IDP.

As the App gets registered with the IDP, a client id and client secret are generated. Using these as
credentials, we can now ask the IDP for an access token with a given scope and using this token our
App can now connect to other services and be properly authorized.

For all running containers, the URL of the IDP is available as an environment variable named
SYSTEM_IDENTITY PROVIDER and requesting an access token is as simple as sending a HTTP POST
request corresponding to running the following curl command.

curl --request POST \
--url ${SYSTEM IDENTITY PROVIDER}/connect/token \
--header 'content-type: application/x-www-form-urlencoded' \
--data grant type=client credentials \
--data scope=managementserver \
--data client id=${CCF CLIENT ID} \
--data client secret=${CCF_CLIENT SECRET}

The client id and client secret are provided inside each running container through two
environment variables named respectively CCF_CLIENT ID and CCF_CLIENT SECRET .

The body of the response will look something like this

{
"access token": "eyJhbGc...",
"expires in": 3600,
"token type": "Bearer",
"scope": "managementserver"
b

Registering a client for the authorization code flow

The OAuth 2 Authorization Code Flow is the standard and most secure method for web applications to
obtain authorized access to protected resources on behalf of a user. The process involves several
interactions between the user, the App (e.g., a website), the authorization server (the XProtect Identity
Provider), and the resource server (the API that holds the user's data).

Before using the flow, our App must be registered with the XProtect Identity Provider (IDP). This is
done by adding the following top-level section to the App definition file

credentials:
authorizationCodeFlow:
clientName: "app-using-authorization-code-flow"
clientScopes: ["openid", "profile", "managementserver", "offline access"]
clientRedirectURIs: ["https://my-app/sign-in"]
postLogoutRedirectURIs: ["https://my-app/sign-out"]

For the registration we must provide a descriptive clientName and a list of clientScopes
identifying which scopes our App will need access to. Also, we must specify a set of approved URIs
that the authorization server (the IDP) can use to redirect the user's browser to. The

clientRedirectURIs are the allowed redirects after having granted or denied permission. Likewise,
the postLogoutRedirectURIs are the allowed redirects after a logout.

Below are listed the typical steps involed in the authorization code flow.

1. The App initiates the flow by redirecting the user's browser to the authorization server's
authorization endpoint.

2. The authorization server displays a consent screen, asking the user if they grant the App the
requested permissions.

3. If the user approves, the authorization server generates a temporary, single-use authorization
code and redirects the user's browser back to the App's pre-registered redirect URI.

4. The App sends a request to exchanges the code for a token using the back-channel without
involving the user's browser. Part of the request will be the client id and client secret of the
App.

5. The authorization server validates the code, client id, and client secret. If everything is correct,
it responds with an access and refresh token.

6. The App uses the access token to call the resource server's APl endpoints.

The authorization server URL, client id and client secret are all available to the App through the
environment variables named respecitively SYSTEM_IDENTITY_PROVIDER , ACF_CLIENT_ID and
ACF_CLIENT SECRET .

Working with Kafka topics

Kafka can be used to decouple services by allowing messages to be produced and consumed through
topics in a robust, reliable and fault-tolerant maner. However, topics must be created before they can
be used and this part can be handled automatically when installing an App, so we don't have to do it
from code.

To have Kafka topics created automatically when installing an App, we must specify a section similar to
the one shown below. Here we are listing those Kafka topics from which we plan to consume messages
and also those topics to which we plan to produce messages.

messaging:
kafka:
consumerTopics:
- name: "my-realm.my-topic"
- name: "pub.another-realm.another-topic"
producerTopics:
- name: "my-realm.my-topic"
- name: "pub.my-realm.my-new-topic"

Only the producer topics are created when the App is installed. The consumer topics are instead
expected to already exist and if it turns out that they do not, then the installation of the App will fail.

The naming convention of topics follow the one used for services very closely, except here we use the
character to more clearly separate the parts. For services this was not possible because those
names end up being used in contexts where . is anillegal character. A topic name consist of three
parts following the pattern [pub.]<realm>.<name> , of which the first one is optional. For the topic
named pub.my-realm.my-new-topic , the three parts are thus pub , my-realm and my-new-

topic . Here pub means that the topic is public and thus accessible for all other services in the

system. If the pub partis left out, like if the name is my-realm.my-topic , then the topic is private
and only accessible to services belonging to the realm named my-realm . The last and third part of
the topic name is a descriptive and unique name identifying the topic within the realm it belongs to.

All producer topics must have a realm matching the realm of the App itself. For consumer topics, it is
possible to use a topic with a different realm, but it then must be public.

There are several configuration parameters that can be applied when a producer topic is created. Here
is an example listing all the parameters we can specify.

messaging:
kafka:

producerTopics:

- name: "my-realm.my-topic"
partitions: 1
replicationFactor: 1
cleanupPolicy: "delete"
retention:

milliseconds: 300000

bytes: 1073741824
segment:

milliseconds: 60000

bytes: 134217728

Configuring the topics in an optimal way is a fairly advanced topic. An intro to the core concepts like

partitions and replication factor can be found here:

https://kafka.apache.org/documentation/#intro_concepts_and_terms. Both partitions and
replicationFactor use a default value of 1 if not specified.

The remaining parameters are related to how messages get deleted. Here is a list mapping each to
their respecitive counterpart parameter in the Kafka documentation. If not specified (or set to zero),
the values will default to global values configured for the Kafka cluster.

« cleanupPolicy : https://kafka.apache.org/documentation/#topicconfigs_cleanup.policy,

« retention.milliseconds :
https://kafka.apache.org/documentation/#topicconfigs_retention.ms

- retention.bytes : https://kafka.apache.org/documentation/#topicconfigs_retention.bytes

. segment.milliseconds : https://kafka.apache.org/documentation/#topicconfigs_segment.ms

« segment.bytes : https://kafka.apache.org/documentation/#topicconfigs_segment.bytes

When the App is uninstalled, all producer topics will be deleted.

Accessing topics from code is done using a language specific library that implements a Kafka client.
There are many different libraries available, but they all have in common that they need something
called a bootstrap server. This is the server (actually a comma separated list of servers) that allows
the client to bootstrap the communication with the Kafka cluster. The bootstrap server will be made
available to every container through the environment variable named KAFKA BOOTSTRAP_SERVER .

Using a PostgreSQL database

Often an App will need to store some data (e.g., configuration data) which it can query at a later point.
To help serve this very common need, a PostgreSQL database can be automatically created as part of

https://kafka.apache.org/documentation/#intro_concepts_and_terms
https://kafka.apache.org/documentation/#topicconfigs_cleanup.policy
https://kafka.apache.org/documentation/#topicconfigs_retention.ms
https://kafka.apache.org/documentation/#topicconfigs_retention.bytes
https://kafka.apache.org/documentation/#topicconfigs_segment.ms
https://kafka.apache.org/documentation/#topicconfigs_segment.bytes

installing an App. We simply add a databases section to our app definition file like shown below. All we
need to provide is just the name of the database to create.

databases:
postgresql:
name: "my-realm.my-db"

The prefix my-realm must match the value of the realm top-level property. This naming scheme will
be enforced by the app-builder and has the purpose of avoiding naming conflicts between databases
created within different realms. The connection details will be available to every container deployed by
the App through the following environment variables.

PGDB_HOST : The hostname of the PostgreSQL database cluster service.
PGDB_PORT : The port number of the PostgreSQL database cluster service.
PGDB DBNAME : The name of the database.

PGDB_USERNAME : The username needed when connecting to the database.

PGDB_PASSWORD : The password needed when connecting to the database.

PGDB_URI : The complete PostgreSQL connection string needed when working with
the database.

Optionally, we can also provide a schema (an array of SQL scripts) to apply on the newly created
database. We can do this by providing the schema inline as shown below using the schema field.

databases:
postgresql:
name: "my-realm.my-app-db"
schema:
- -
create table if not exists tasks (
id serial primary key,
description text not null
);

Or we can use the schemaFiles field, if it is preferred to have the schema in separate files. Note,
that the files must be placed inside files in the custom definitions directory (see the section on
Custom Definition).

databases:
postgresql:
name: "my-realm.my-app-db"
schemaFiles:
- "files/my-first-script.sql"
"files/my-second-script.sql”

When upgrading our App to a new version, the schema will be re-applied to the database and we can
thus here change our database layout as needed. All containers will be stopped before the schema is
applied and started again afterwards. Note that the provided SQL scripts are always executed in the
order they are listed.

When the App is uninstalled, the database is automatically deleted.

Working with persistent storage

Most Apps that need to store state should use an actual database (e.g., a PostgreSQL database) for
such a purpose. However, there are special cases where an App might need a persistent file storage
for storing data. For such use cases the app definition file allows us to define a persistent volume
which we can then mount into a container. If the system or container is restarted, the data will not be
lost.

Here is an example app definition file setting up a volume to be mounted into a container.

name: "app-using-storage"

realm: "my-realm"

version: 1.0.0

description: "An App that uses persistent storage"

prerequisites:
systemVersion: ">=0.3.9"

volumes:

- name: my-volume
size: 30Gi
class: media

services:
- name: my-realm-my-service
routes:
- name: my-route
port: 80
targetPort: 80

containers:
- name: my-container
image: sandbox.io/hello-world/webserver:1.2.2
volumeMounts:
- name: my-volume
path: /mnt/data

Here we first define a volume named my-volume instructing the system to find an available disk with
a total capacity of at least 30Gi and which has been assigned the label media . Labels are assigned to
disks as part of the system configuration and provides a way to group disks (actually partitions) by
what kind of storage they are suitable for. The media label can as an example be assigned disks that
are suitable for storing media data (video and audio data). If no disk is found, the installation of the
App will fail.

In the example above, we mount the volume inside my-container at /mnt/data . Whatever the
container stores here will continue to exist also after a restart of the container. Note that two
containers can mount the same volume. Also note that a container which mounts a volume will be
locked to run on the server which has the physical disk backing up the storage. Thus, such a container
cannot be rescheduled automatically to run on another server in the system.

As shown earlier, we can use the volumes command to list the active volumes of an App and also
what physical disk they are mounted from.

Replicating service workloads

Pods are the smallest deployable units of computing that we can create. All containers of one service
are deployed as one pod. This makes them share storage and network resources. Specificially, all
containers of a service have the same IP address.

Below is an example service specification in an app definition file. Here the service will deploy two
containers together in one pod. Both containers are assigned the same IP address and thus must listen
on two different ports for incoming requests. In the example, we route both port 80 and port 81 to the
pod and we expect the two containers to serve these.

services:
- name: pub-my-realm-my-service
replicas: 5

routes:
- name: my-route-1
port: 80

targetPort: 80
- name: my-route-2
port: 81
targetPort: 81
containers:
- name: my-container-1
image: sandbox.io/first-container:1.0.0
ports:
- name: web
containerPort: 80
- name: my-container-2
image: sandbox.io/second-container:1.0.0
ports:
- name: api
containerPort: 81

In the above example, we also specify the replicas field with a value of 5. This instructs the

scheduler that we want the pod with the two containers to be replicated 5 times. So, in all, we will

have 10 containers running in 5 different pods. When connecting to the service using the hostname
pub-my-realm-my-service , the traffic will be routed to a random one of the 5 pods.

When scheduling multiple pods, you can control how they are spread across the cluster by adding a
topologySpreadConstraints section to the service. Below is an example that will cause the pods to
be equally spread across all nodes in the cluster.

topologySpreadConstraints:

- maxSkew: 1
topologyKey: kubernetes.io/hostname
whenUnsatisfiable: ScheduleAnyway

The topologyKey defines what domain you want your pods to be spread across. It could be regions
(topology.kubernetes.io/region), zones (topology.kubernetes.io/zone), nodes

(kubernetes.io/hostname), or even custom labels, depending on your infrastructure needs. Nodes
that have a label with this key and identical values are considered to be in the same topology. We call

each instance of a topology a domain. The scheduler will try to put a balanced number of pods into
each domain. The maxSkew parameter controls the allowed imbalance between topology domains.
For instance, if you set maxSkew to 2, the difference in the number of pods between any two domains
should not be more than 2. It gives you some flexibility in distribution while still ensuring a reasonable
balance. Finally whenUnsatisfiable defines what should be done when the pod distribution rules
cannot be satisfied. There are two options: ScheduleAnyway and DoNotSchedule .

Sometimes, it is important that we have exactly one pod per node in the cluster. If a node is added, a
new pod should automatically be scheduled. Likewise, if a node is removed, the pod running on that
node should be stopped and removed. To support this usecase, we can set the replicas field to
OnePerNode .

When replicating with OnePerNode , it can be useful to enable traffic restrictions to only route traffic
to endpoints within the node the traffic originated from. This will avoid a round trip via the cluster
network and thus can help improve reliability and performance (network latency and throughput). We
do this by setting the internalTrafficPolicy to Local .

services:

- name: pub-my-realm-my-service
replicas: OnePerNode
internalTrafficPolicy: Local
routes:

- name: my-route
port: 80
targetPort: 80
containers:
- name: my-container
image: sandbox.io/my-container:1.0.0

The default value of internalTrafficPolicy is Cluster .

Specifying App resources

App resources specify the compute resources (CPU, memory, GPU) that each container in your App will
request and be limited to when running in Kubernetes. This allows you to control how much of the
cluster’s resources your App can use, and helps ensure fair scheduling and stability.

You can define resource requests and limits for each container in your App definition file under the
resources section:

services:
- name: my-service
containers:

- name: my-container
image: sandbox.io/hello-world/webserver:1.2.2
resources:

limits:
cpu: "1"
memory: "1Gi"
gpu: "1*"
requests:
cpu: "500m"

memory: "512Mi"
gpu: "1

Requests are the minimum amount of resources a container is guaranteed, used for scheduling, while
limits are the maximum amount a container can use, preventing it from consuming excessive
resources and affecting others.

CPU

o Format: "500m" (500 millicores, or 0.5 CPU), "1" (1 CPU core)
« If not specified, defaults to 500m (limit) and 256m (request).

Memory
« Format: "512Mi" , "1Gi" , "2Gi" (must use binary units: Ki, Mi, Gi, Ti, Pi, Ei)
« If not specified, defaults to 512Mi (limit) and 256Mi (request).

GPU
« Format: "1" , "2" (number of GPUs, optional)

« Only set if your workload requires GPU resources.

Note that if you omit the resources section, the default values will be used. It is important that
appropriate requests and limits are configured to help the scheduler run your containers efficiently
and preventing resource contention.

GPU resources are only available if your cluster supports them (e.g., with NVIDIA GPUs).

For more details, see the Kubernetes documentation on resource management

Routing ingress to service

We have seen how an App can define a service and expose it so that other services inside the system
can connect to it. However, if we want to access one of these services from outside the system, then
we need set up a specific rule that allows this. We use the term ingress for traffic coming from the
outside and entering the system. Ingress will always arrive through the system IP address and then be
routed to a specific service. Exposing a Web page or REST API to the outside world are typical
examples for which ingress is needed.

Below is shown an example expanding a given route to also allow ingress traffic to reach a service.
Specifically, all HTTP requests sent to the system IP address (or system host name) with root path
/xp/hello-world will here be routed to my-realm-my-service .

name: "app-exposing-endpoint"

realm: "my-realm"

version: 1.0.0

description: "An App that exposes an endpoint at /my-webpage"

prerequisites:
systemVersion: ">=0.3.9"

services:
- name: my-realm-my-service
routes:
- name: my-route
port: 80

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

targetPort: 80
ingress:
rootPath: "/xp/hello-world"
rules:
- path: "/"
scopes: ["managementserver"]

containers:
- name: my-container
image: sandbox.io/hello-world/webserver:1.2.2

We define a rule that will forward all sub paths of /xp/hello-world to my-realm-my-service . The
path will be rewritten in the process to strip away the specified rootPath . So, a request to

/xp/hello-world/index.html will reach the service with path /index.html and have the X-
Forwarded-Prefix header field set to original request path. Also, in the example above, we require
that all requests are authorized to have access to the managementserver scope. The request must
thus in the authorization header provide an access token that has been issued by the XProtect Identity
Provider and that has access to the scope named managementserver . If this is not the case, the
request will be denied before routed to the service. If we leave out scopes , then authorization is
disabled and no access token is required. Also note, that we above expose a service that is not public
(it's name does not start with pub-). This means that even though we exposed the service outside
the cluster, it cannot be accessed directly inside the cluster from services in other realms.

We structure ingress traffic and how to specify the rootPath by three different usecases; an
experience, an MFE and an API. An experience is a webpage that an end-user might be interested in
visiting, perpaphs by simply writing the URL in the browser. The rootPath for an experience is for
this reason kept fairly open only requiring it not to start with /mfe , /api or /legacy .

An MFE (or microfrontend) is a Ul component that can be re-used by multiple experiences. Here the

rootPath must match the pattern /mfe/<realm>/<name> , where the <realm> is that of the App
exposing the microfrontend and the <name> is free to choose. Note, that we can expose both the MFE
itself (main.js) and an associated BFF (backend for frontend) through the same service by setting up
individual rules.

ingress:
rootPath: "/mfe/my-realm/my-mfe"
rules:
- path: "/main.js"
- path: "/api/"

scopes: ["managementserver"]

Finally, an APl (e.g., a REST API) offered by a service can be exposed by having the rootPath match
the pattern /api/<realm>/<name> . Here, the <realm> is that of the App exposing the service and
the <name> is free to choose but recommended to follow that of the service. So, if we have a service
named pub-my-realm-my-service then itis good pratice to expose it using the path /api/my-
realm/my-service .

Importing a Grafana dashboard

A Grafana dashboard is a visual interface that displays data from various sources in a customizable
way. It's essentially a collection of panels, each showing a specific piece of information, like graphs,
charts, or tables, arranged to provide a comprehensive view of your system's health and performance.

We can import one or more dashboards to Grafana by adding a dashboards section simliar to the
one shown below.

dashboards:
grafana:
import:
"files/my-first-dashboard.json"
"files/my-second-dashboard.json"

When the App is installed (and upgraded), the two dashboards will automatically be imported into
Grafana. Note, that the files must be placed inside files in the custom definitions directory (see the
section on Custom Definition). When the App is uninstalled, the dashboards are likewise deleted from
Grafana.

The specified files are subject to Jinja template rendering. This means you can use values from the App
definition file inside the dashboards. As an example, {{ name }} will expand to the name of the App.
Since Grafana dashboards use the same notation for variables, this can cause problems. To avoid any

template rendering, prefix and suffix you files with respecitively {%- raw -%} and {%- endraw -%} .

Collecting metrics from a container using Prometheus

Prometheus is an open-source monitoring and alerting toolkit that collects and stores time-series data.
It's widely used in cloud-native environments, especially with Kubernetes, for monitoring applications
and infrastructure. Prometheus works by scraping metrics from target systems and storing them with
timestamps, allowing for powerful querying and alerting.

We also use Prometheus to collect metrics from Apps. Prometheus will connect to each App with
regular intervals and ask the App for the current value of its metrics. Typically, your App would
implement an HTTP endpoint hosting its metrics with path /metrics . There are several client
libraries that can help you implement such an endpoint; e.g., for golang, you can use the following
library https://github.com/prometheus/client_golang.

To let Prometheus know that it should scrape such an endpoint, you must name the relevant container
port app-metrics . Here is an example of how to specify this for a given container. Specificially, with

this example, Prometheus will start collecting metrics from the container using HTTP requests for
http://<cluster-ip-of-pod>:9100/metrics .

containers:
- name: my-container
image: sandbox.io/hello-world/webserver:1.2.2
ports:
- name: app-metrics
containerPort: 9100

Extending client applications with Microfrontends

A microfrontend is a web development architectural approach where a large frontend application is
broken down into smaller, independent, and deployable modules or microfrontends. These modules
are often developed and maintained by separate teams. The shell (or container) is the overarching
application that loads and orchestrates these microfrontends, providing a unified user interface and
handling navigation and shared functionality.

https://github.com/prometheus/client_golang

An App can expose a microfrontend (MFE) to the shell by adding a registration similar to what is shown
below.

microfrontends:

- id: "6933780b-0blf-457c-9e62-232958ecd1ld3"
path: "/mfe/my-realm/maps/main.js"
version: 2.0.2
namespace: "my-realm-maps"
name: "my-realm-maps"

audience:
requiredShellApi: ">=1.0.2"
requiredPermissions: ["maps.view", "maps.manage"]

targetExperiences: ["administrator"]

targetApplications: ["management-client"]
metadata:

module: "main"

bundler: "webpack"

framework: "react"

The path must locate the main.js file of the microfrontend and it must start with /mfe/<realm>/ ,
where the <realm> is that of the App exposing the microfrontend. The entire path /mfe/my-
realm/maps/main.js must be exposed for ingress, so that a request for this file from the shell will
reach the container serving the file. Here is an example of how such a service definition could look
like.

services:
- name: my-realm-my-service

routes:

- hame: my-route
port: 80
targetPort: 80
ingress:

rootPath: "/mfe/my-realm/maps
redirectPath: "/"

rules:

- path: "/main.js"

- path: "/api/"
containers:

- name: my-container
image: sandbox.io/my-app/my-service:1.0.0

Note, that we also here allow requests on /mfe/my-realm/maps/api/... to reach the container.
Basically, this is to allow the microfrontend to make API calls to its BFF (backend-for-frontend). Instead
of a single, general-purpose backend serving all clients, BFFs tailor the backend logic and data to the
unique needs of each frontend. This approach optimizes performance, simplifies frontend
development, and enhances the overall user experience.

Going back to the microfrontends section, we have for each microfrontend an audience section
that identifies for whom it is designed and in which context it is intended to be used. The

requiredShellAPI and requiredPermissions specify respectively the minimum shell APl version
and the permissions of the audience that are required for the microfrontend to be loaded. With

targetExperiences and targetApplications , the audience of the microfrontend can be made
more specific. Possible values of an experience are operator , administrator , integrator ,
supporter and developer . For applications, possible values are management-client , smart-
client and web-client .

Finally, there is a metadata section that the shell will use for deciding where and how to render the
microfrontend. The ownership of what can go into the metadata section belongs to the shell and will
evolve as newer versions of the shell becomes available. See the shell api documentation for more
details.

Environment variables and command line arguments

In the App definition file, we can define environment variables for each container. We do this by
expanding each container definition with an env section as shown below.

containers:
- name: my-container
image: sandbox.io/hello-world/webserver:1.2.2
env:
- name: MY FIRST ENVIRONMENT VARIABLE
value: "The value of my first environment variable"
- name: MY SECOND ENVIRONMENT VARIABLE

value: "The value of my second environment variable"

All containers have the following set of predefined environment variables that we use.

APP_NAME : The name of the App

APP_REALM : The realm of the App

APP_VERSION : The version of the App

SYSTEM IP : The external IP address of the System
SYSTEM NAME : The display name of the System

SYSTEM UUID : The unqiue ID of the System

SYSTEM_IDENTITY_ PROVIDER : The URL of the Identity Provider of the System
LEGACY_MANAGEMENT SERVER : The hostname of the Management Server in XProtect
LEGACY USE TLS : Whether legacy system is configured to use TLS
(true/false)

For setting command line arguments, the App definition file can be extended with an args section
which is basically a list of command line arguments that will be passed on to the container.

containers:
- name: my-container
image: sandbox.io/hello-world/webserver:1.2.2
args: ["my-first-command-line-argument", "my-second-command-line-argument" 1]

App values

App values are named values that we can define in the App definition file, which can be changed at
the time of installation. Since they cannot be set when installing an App from the App Center, they are
mostly useful for testing and debugging purposes. Below is shown a simple example using an App
value to control the log level of a web server.

name: "app-using-app-values"

realm: "my-realm"

version: 1.0.0

description: "An App that allows you to control the log level with an App value"

prerequisites:
systemVersion: ">=0.3.9"

values:
logLevel: error

services:
- name: my-realm-my-service
routes:
- hame: my-route
port: 80
targetPort: 80
containers:
- name: my-container
image: sandbox.io/hello-world/webserver:1.2.2
args: ["httpd-foreground", "-e", "{{ .Values.logLevel }}" 1]

We define a new section named values which is a dictionary of named values. Specifically, we here
have one value named logLevel which by defaultis setto error . When running the web server

(httpd-foreground) in the container, we provide the command line arguments -e and {{
.Values.logLevel }} . At the time of installation, the argument {{ .Values.logLevel }} will
expand to the value that we specified for logLevel inthe values section. When installing the App
through the App Center, the error log level will thus be used. However, this can be overwritten if
installing the App using the app-builder. As an example, if we want to instead use the debug level,
we can run the following command (the install-from-file command works the same way)

./app-builder.sh -f app-using-app-values.yaml install-from-repo --set logLevel=debug

Note that the we don't need to uninstall the App first if it is already installed. We can thus keep
running the above command with different values and the container will automatically be restarted
using the new value.

Custom definitions

Sometimes, the features supported by the App definition file is not enough for our App. In this case,
we can provide our own custom definitions and control in much more detail how the App gets
deployed. However, this also requires a much greater understanding of Kubernetes and Helm Charts.

Custom definitions are provided through a special directory that we can specify on the command line
with the -c option.

App Builder - Building your own App for the App Center

Usage: app-builder [options] <command>

Options:

-h This message

-f <file> App YAML definition file to use; default is app-definition.yaml

-c <directory> Directory with custom definitions; default is the YAML definition
file without file extension

-0 <directory> Directory to store packaged Helm Chart of App; default is current
directory

The structure of the folder must match that of a Helm Chart and the files will be merged in on top of
the files generated by the App builder before the final package is built. All files with the extension

.jinja will be rendered by the jinja2 template engine before copied and the resulting file will have
its .jinja extension removed from its name. The directory named files is treated in a special
way in that it is not being copied / rendered into the final package. This directory can be used for files
that are only needed during the template rendering phase and not directly in the final package.

