
App Builder

The app-builder tool assists us in developing and building a containerized App that can be installed

using the App Center. In summary, the tool takes an App definition file as input and from this builds a

package that the App Center can use to install the App. How to build the actual container images used

by the App is not in the scope of this document and basic knowledge about how to work with container

images is expected.

App Builder

Prerequisites

A simple example

The Sandbox repository

Detailed command line usage

Commands for updating the App repository

Commands for running Apps

Commands for getting status about Apps

Commands for bundling an App

App definition file

App metadata

Specifying prerequisites

Consuming and providing APIs from contracts

Using the client credentials flow

Registering a client for the authorization code flow

Working with Kafka topics

Using a PostgreSQL database

Working with persistent storage

Replicating service workloads

Specifying App resources

CPU

Memory

GPU

Routing ingress to service

Importing a Grafana dashboard

Collecting metrics from a container using Prometheus

Extending client applications with Microfrontends

Environment variables and command line arguments

App values

Custom definitions

Prerequisites

To run the app-builder, we must have Docker installed. If running on Windows, we can use Docker

Desktop and for Ubuntu or other Linux variants we can use the standard channels to install it. The

actual app-builder tool is available as both a power-shell script (app-builder.ps1) for Windows and a

bash script (app-builder.sh) for Linux. You can download it from here:

https://doc.developer.milestonesys.com/appen/?path=App-Builder

A simple example

https://www.docker.com/products/docker-desktop/
https://www.docker.com/products/docker-desktop/
https://doc.developer.milestonesys.com/appen/?path=App-Builder

To introduce the app-builder, it is best to look at a simple example. Building an App always starts with

creating an App definition file. It is a YAML file and below is shown an example of how a very simple

App can be defined.

name: "most-simple-app"

realm: "my-realm"

version: 1.0.0

description: "The most simple App you can make"

prerequisites:

 systemVersion: ">=0.3.9"

services:

- name: pub-my-realm-my-service

 routes:

 - name: my-route

 port: 80

 targetPort: 80

 containers:

 - name: my-container

 image: sandbox.io/hello-world/webserver:1.2.2

In summary, we define an App named most-simple-app which has one service called pub-my-

realm-my-service . The service will run the container image sandbox.io/hello-

world/webserver:1.2.2 and expose port 80 through which other services in the system can access it

using hostname pub-my-realm-my-service . It is worth mentioning here that the service names are

governed by a strict naming convention which you can read more about in the section describing the

app-definition file.

Given the above App definition file, we can now build the App using the app-builder tool.

./app-builder.sh -f most-simple-app.yaml

This will generate a file in the current directory named most-simple-app-1.0.0.tgz . To make the

App show up in the App Center, this file must be published to one of the repositories that the App

Center is configured to use. The public repositories should not be used until the App is tested and

approved so we need some other repository where we can put it while we are developing and testing

the App. This is what the Sandbox repository is for.

The Sandbox repository

The sandbox provides an internal repository deployed on the same system as the App Center itself. It

is only available if enabled specifically and should not be so for any production environment. In this

section we will look at how to push an App to the sandbox repository and thereby making it visible to

the App Center.

Before being able to push an App to the sandbox repository, we must first login to the system. This is

done by running the app-builder with the login command.

./app-builder.sh login

With this in place, we can now push the App we built earlier with the push command

./app-builder.sh -f most-simple-app.yaml push

This will only push the App itself (its definition) and not the containers it is referring to. In the example

above, the App refers to one container image named sandbox.io/hello-world/webserver:1.2.2 .

To push this container to the sandbox, we must tag our locally built container image with [system ip

/ hostname]:5000/sandbox.io/hello-world/webserver:1.2.2 and then run the docker push

command. By default, Docker does not accept insecure registries, and we therefore have to add the

following lines to the Docker Daemon configuration and restart the service.

{

 "insecure-registries": [

 "[system ip / hostname]:5000",

]

}

At this point, we should be able to go to the App Center, find the App and install it.

Detailed command line usage

Let us take a look at some of the other commands that the app-builder supports. Below is listed the

complete usage of the app-builder tool. Here we have already seen the build , login and push

commands in action.

App Builder - Building your own App for the App Center

Usage: app-builder [options] <command>

Options:

 -h This message

 -f <file> App YAML definition file to use; default is app-definition.yaml

 -c <directory> Directory with custom definitions; default is the YAML definition

file without file extension

 -o <directory> Directory to store packaged Helm Chart of App; default is current

directory

 -r <url> Repository from which to fetch app-registation helm chart;

default is https://horizonsystem.azurewebsites.net/system

 -n Non-interactive mode for build pipelines; default is false. When

true, no interactive prompts are shown

Commands:

 build Build App as Helm Chart (the default command)

 login Login to to system and remember credentials for later use

 logout Logout from system and forget stored credentials

 dashboard Expose Kubernetes Dashboard through localhost

 dashboard-create-token Create new token allowing you to login to the Kubernetes

Dashboard

 list List Apps currently in sandbox repository

 push Push App to sandbox repository

https://docs.docker.com/engine/daemon/

 remove Remove App from sandbox repository

 install-from-file Install App from local file

 install-from-repo Install App from sandbox repository

 uninstall Uninstall App

 restart Restart all containers deployed by App and pull new images

before starting them again

 status Show status of all containers deployed by App

 events Show events related to deployment of App

 volumes Show volumes used by App

 bundle Bundle App including container images together in one

archive file

Commands for updating the App repository

Above, we saw how to use the push command to upload an App to the sandbox repository. If the App

already exist in the sandbox repository, it will be removed first. Pushing an already existing App will

thus produce output as shown below.

{"deleted":true}

{"saved":true}

To explicitly remove an App from the repository, we can use the remove command and we will see

output like this.

{"deleted":true}

Commands for running Apps

Instead of using the App Center to install an App, we can also do it directly with the app-builder tool.

There are two commands available for this. The first one is install-from-file which will install the

App from the generated output file directly. Here is example output from running this command.

Installing /root/out/most-simple-app-1.0.0.tgz to system at 10.10.16.34

Release "most-simple-app" does not exist. Installing it now.

NAME: most-simple-app

LAST DEPLOYED: Mon Mar 3 12:04:40 2025

NAMESPACE: most-simple-app

STATUS: deployed

REVISION: 1

TEST SUITE: None

Here, the input file most-simple-app-1.0.0.tgz is the App that was built using the build

command. By default it is saved to the current directory and is also read from here by default when

using the install-from-file command. We can change the default directory by specifying the -o

option.

The second way to install an App using the app-builder is to use the install-from-repo command.

This one will install the App from the sandbox repository and thus requires it to be uploaded first with

the push command. It will generate similar output as shown above.

To get a list of all Apps that has been pushed to the sandbox repository, we can use the list

command. The output will be YAML formatted with each global key being the name of an App.

most-simple-app:

- apiVersion: v2

 appVersion: 1.0.0

 created: '2025-03-03T13:08:17.355513209Z'

 dependencies:

 - name: app-registration

 repository: https://horizonsystem.azurewebsites.net/system

 version: 1.7.0

 description: The most simple App you can make

 digest: a382ea13b546f859bace3ba74e4e63554cc6e6ff289cf2d181f7459de47ffac9

 name: most-simple-app

 type: application

 urls:

 - charts/most-simple-app-1.0.0.tgz

 version: 1.0.0

When an App is installed, it will instruct the system to pull the needed images from the container

registry and run them. We can at any time restart all running containers using the restart

command. For every service provided by the App, we will see an output line similar to the following

pod "my-service-857dc79c5b-csghm" deleted

Behind the scenes, the container (pod) running the service is deleted, but since the App definition

declares that it must be running, it is automatically restarted by the container orchestration

framework. One useful side-effect of running the restart command is that all container images that

have changed will be re-pulled from the container registry.

Finally, uninstalling the App, is also possible with the uninstall command.

Commands for getting status about Apps

If things are not working as expected, then it can be useful to get more detailed information about the

current status of an App. The status command will for each service of the App show if it is currently

running, and if so, for how long and how many restarts have been made. The output could look like

this.

NAME READY STATUS RESTARTS AGE IP NODE

my-service-857dc79c5b-zbjcc 1/1 Running 0 12m 10.1.27.8 dkws-

vt02-05

If a service is not starting as expected, then the events command can be useful. It will show all

events related to getting the App up and running. If e.g., a container image could not be pulled, then

this will show up here. Below we see output from the events command notifying us that the image

sandbox.io/hello-world/webserver:1.2.3 could not be pulled.

LAST SEEN TYPE REASON OBJECT MESSAGE

4m41s Normal BackOff pod/my-service-55c6f6f459-sj5fs Back-off pulling

image "sandbox.io/hello-world/webserver:1.2.3"

4m41s Warning Failed pod/my-service-55c6f6f459-sj5fs Error:

ImagePullBackOff

For services using volumes for persistent storage, the volumes command will list all active volumes

and where they are physicially located on disk. The example output below shows that my-volume is

bound to the directory /pool/media/2 on server with hostname dkws-vt02-06 .

{

 "volume": "my-volume-pvc",

 "hostname": "dkws-vt02-06",

 "path": "/pool/media/2",

 "class": "media",

 "phase": "Bound"

}

If more details are needed about the status of an App (like log files) or the system as a whole, we can

use the dashboard command to run the Kubernetes Dashboard. When running this command, the

dashboard will be made available through https://localhost:10443 until we press Ctrl+C to break the

command. Note that this only works if the system is setup with the developer option enabled. If not,

the Kubernetes Dashboard is not installed in the system.

Commands for bundling an App

Once an App is working and it is ready for going into a Milestone hosted repository, the bundle

command can be used to create one file containing both the App definition and all referred container

images. This bundle can then be sent to Milestone for verification and if approved it will be made

available in the approriate Milestone hosted repository.

App definition file

In this section we will take a closer look at the App definition file. We already saw a simple example

earlier that looked like this

name: "most-simple-app"

realm: "my-realm"

version: 1.0.0

description: "The most simple App you can make"

prerequisites:

 systemVersion: ">=0.3.9"

services:

- name: pub-my-realm-my-service

 routes:

 - name: my-route

 port: 80

 targetPort: 80

 containers:

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://localhost:10443/

 - name: my-container

 image: sandbox.io/hello-world/webserver:1.2.2

This is a very minimal App definition file which exposes a service named pub-my-realm-my-service .

There is a strict naming convention for service names, which the app-builder enforces. The name can

be divided into three parts following this pattern [pub-]<realm>-<name> . In the above example the

parts would be pub , my-realm and my-service . The first part is optional and will if present always

be pub . This signifies that the service is public and can be reached by any other service in the

system. Had we changed the name in the example above to my-realm-my-service , then this service

would only be accessible from other services within the same realm as the App itself. The realm of an

App is specified using the top-level property named realm and this value must always match the

realm part of the service name. The third part, which in the example is my-service , is a descriptive

but unique name of the service within the given realm.

In the following sections, we will now look at how we can extend this simple example in different ways.

App metadata

We have already seen how we can specify a name , realm , version and description of an App.

Each of these are mandatory fields and the app-builder will fail if they are not explicitly defined.

Optional metadata fields are license , readme and changelog as illustrated below.

license: "MIT License"

readme: |

 ## Overview

 This is an app that shows the hello world message

 in a web package.

changelog: |

 ## [1.0.0] - 2025-02-25

 First version.

The license field should be set to the name of the license that applies to the App. We can use any

text that identifies the license in use whether it is open source or commercial. The readme field is

text which in details explain why the App is useful, what can be done with the App, and how it is used.

This is in contrast to the description field that we saw earlier, which is expected to be a single line

describing the App. The changelog field must be a curated, chronologically ordered list of notable

changes for each version of the App. Both the readme and changelog fields can be specified using

Markdown syntax.

Specifying prerequisites

In the simple example, we saw how to specify a prerequisite on the system version using the

systemVersion field. When the App is installed, it will be checked that the running system fulfills the

version requirement and fail if not. Thus, it might be necessary to upgrade our system before a given

App can be installed.

While the systemVersion is a required field, there are also two optional prerequisites that we can

provide. These are for system services and other Apps. Below is shown an example that illustrates

both.

prerequisites:

 systemVersion: ">=0.3.1"

https://www.markdownguide.org/

 systemServices: ["kafka", "fuseki"]

 apps:

 - name: "another-app"

 version: ">=1.6.2"

 - name: "yet-another-app"

 version: ">=1.2.0"

In this example, we use the systemServices field to specify that the App must have both Kafka and

Fuseki installed to function. We don't provide a specific version for these since this is indirectly implied

by the given systemVersion . Another possible prerequisite that the App can define is for other Apps

to be already installed. In the example above we e.g., require another-app in at least version

1.6.2 to be already installed. When installing an App through the App Center, the required system

services and App dependencies will be automatically installed.

Consuming and providing APIs from contracts

An API contract serves as a formal agreement outlining how different services should interact with

each other. The agreement defines rules, specifications, and expectations for data exchange,

functionality, and communication. When an App depends on the APIs of a contract, we say that it

consumes the APIs of the contract. Likewise, when an App is implementing the APIs of a contract, we

say that is provides the APIs of the contract. We express this relationship by adding an apis section

to the app definition file. An example is shown below.

apis:

 consumes:

 - name: my-realm.other-api-contract

 version: ">=1.1.2"

 provides:

 - name: my-realm.my-api-contract

 version: "1.4.7"

Here the App consumes APIs from the contract named other-api-contract in version =>1.1.2 .

The example also specifies that the App provides the APIs of the contract named my-api-contract

in version 1.4.7 . The version scheme used is Semantic Versioning 2.0.0. For comparing versions, the

semverCompare function is used which you can read more about here.

Note, that before installing an App, it will be checked if the consumed APIs are made available by an

already installed App. If not, the installation will fail.

Using the client credentials flow

Often, an App will implement a service which will need access to other services in the system without

a user being directly involved. For authorizing this kind of service to service communication, the

recommended approach is to use the OAuth 2 Client Credentials Flow. The first step in this flow is to

get our App registered with the XProtect Identity Provider. This is done by adding the following top-

level section to the App definition file

credentials:

 clientCredentialsFlow:

 clientName: "app-using-client-credentials-flow"

 clientScopes: ["managementserver"]

https://kafka.apache.org/
https://jena.apache.org/documentation/fuseki2/
https://semver.org/
https://helm.sh/docs/chart_template_guide/function_list/#semvercompare

For the registration we must provide a descriptive clientName and a list of clientScopes

identifying which scopes our App will need access to. When the App is installed, it will now

automatically be registered as a client with the XProtect Identity Provider. Below we will refer to the

XProtect Identity Provider as simply the IDP.

As the App gets registered with the IDP, a client id and client secret are generated. Using these as

credentials, we can now ask the IDP for an access token with a given scope and using this token our

App can now connect to other services and be properly authorized.

For all running containers, the URL of the IDP is available as an environment variable named

SYSTEM_IDENTITY_PROVIDER and requesting an access token is as simple as sending a HTTP POST

request corresponding to running the following curl command.

curl --request POST \

 --url ${SYSTEM_IDENTITY_PROVIDER}/connect/token \

 --header 'content-type: application/x-www-form-urlencoded' \

 --data grant_type=client_credentials \

 --data scope=managementserver \

 --data client_id=${CCF_CLIENT_ID} \

 --data client_secret=${CCF_CLIENT_SECRET}

The client_id and client_secret are provided inside each running container through two

environment variables named respectively CCF_CLIENT_ID and CCF_CLIENT_SECRET .

The body of the response will look something like this

{

 "access_token": "eyJhbGc...",

 "expires_in": 3600,

 "token_type": "Bearer",

 "scope": "managementserver"

}

Registering a client for the authorization code flow

The OAuth 2 Authorization Code Flow is the standard and most secure method for web applications to

obtain authorized access to protected resources on behalf of a user. The process involves several

interactions between the user, the App (e.g., a website), the authorization server (the XProtect Identity

Provider), and the resource server (the API that holds the user's data).

Before using the flow, our App must be registered with the XProtect Identity Provider (IDP). This is

done by adding the following top-level section to the App definition file

credentials:

 authorizationCodeFlow:

 clientName: "app-using-authorization-code-flow"

 clientScopes: ["openid", "profile", "managementserver", "offline_access"]

 clientRedirectURIs: ["https://my-app/sign-in"]

 postLogoutRedirectURIs: ["https://my-app/sign-out"]

For the registration we must provide a descriptive clientName and a list of clientScopes

identifying which scopes our App will need access to. Also, we must specify a set of approved URIs

that the authorization server (the IDP) can use to redirect the user's browser to. The

clientRedirectURIs are the allowed redirects after having granted or denied permission. Likewise,

the postLogoutRedirectURIs are the allowed redirects after a logout.

Below are listed the typical steps involed in the authorization code flow.

1. The App initiates the flow by redirecting the user's browser to the authorization server's

authorization endpoint.

2. The authorization server displays a consent screen, asking the user if they grant the App the

requested permissions.

3. If the user approves, the authorization server generates a temporary, single-use authorization

code and redirects the user's browser back to the App's pre-registered redirect URI.

4. The App sends a request to exchanges the code for a token using the back-channel without

involving the user's browser. Part of the request will be the client id and client secret of the

App.

5. The authorization server validates the code, client id, and client secret. If everything is correct,

it responds with an access and refresh token.

6. The App uses the access token to call the resource server's API endpoints.

The authorization server URL, client id and client secret are all available to the App through the

environment variables named respecitively SYSTEM_IDENTITY_PROVIDER , ACF_CLIENT_ID and

ACF_CLIENT_SECRET .

Working with Kafka topics

Kafka can be used to decouple services by allowing messages to be produced and consumed through

topics in a robust, reliable and fault-tolerant maner. However, topics must be created before they can

be used and this part can be handled automatically when installing an App, so we don't have to do it

from code.

To have Kafka topics created automatically when installing an App, we must specify a section similar to

the one shown below. Here we are listing those Kafka topics from which we plan to consume messages

and also those topics to which we plan to produce messages.

messaging:

 kafka:

 consumerTopics:

 - name: "my-realm.my-topic"

 - name: "pub.another-realm.another-topic"

 producerTopics:

 - name: "my-realm.my-topic"

 - name: "pub.my-realm.my-new-topic"

Only the producer topics are created when the App is installed. The consumer topics are instead

expected to already exist and if it turns out that they do not, then the installation of the App will fail.

The naming convention of topics follow the one used for services very closely, except here we use the

. character to more clearly separate the parts. For services this was not possible because those

names end up being used in contexts where . is an illegal character. A topic name consist of three

parts following the pattern [pub.]<realm>.<name> , of which the first one is optional. For the topic

named pub.my-realm.my-new-topic , the three parts are thus pub , my-realm and my-new-

topic . Here pub means that the topic is public and thus accessible for all other services in the

system. If the pub part is left out, like if the name is my-realm.my-topic , then the topic is private

and only accessible to services belonging to the realm named my-realm . The last and third part of

the topic name is a descriptive and unique name identifying the topic within the realm it belongs to.

All producer topics must have a realm matching the realm of the App itself. For consumer topics, it is

possible to use a topic with a different realm, but it then must be public.

There are several configuration parameters that can be applied when a producer topic is created. Here

is an example listing all the parameters we can specify.

messaging:

 kafka:

 producerTopics:

 - name: "my-realm.my-topic"

 partitions: 1

 replicationFactor: 1

 cleanupPolicy: "delete"

 retention:

 milliseconds: 300000

 bytes: 1073741824

 segment:

 milliseconds: 60000

 bytes: 134217728

Configuring the topics in an optimal way is a fairly advanced topic. An intro to the core concepts like

partitions and replication factor can be found here:

https://kafka.apache.org/documentation/#intro_concepts_and_terms. Both partitions and

replicationFactor use a default value of 1 if not specified.

The remaining parameters are related to how messages get deleted. Here is a list mapping each to

their respecitive counterpart parameter in the Kafka documentation. If not specified (or set to zero),

the values will default to global values configured for the Kafka cluster.

cleanupPolicy : https://kafka.apache.org/documentation/#topicconfigs_cleanup.policy

retention.milliseconds :

https://kafka.apache.org/documentation/#topicconfigs_retention.ms

retention.bytes : https://kafka.apache.org/documentation/#topicconfigs_retention.bytes

segment.milliseconds : https://kafka.apache.org/documentation/#topicconfigs_segment.ms

segment.bytes : https://kafka.apache.org/documentation/#topicconfigs_segment.bytes

When the App is uninstalled, all producer topics will be deleted.

Accessing topics from code is done using a language specific library that implements a Kafka client.

There are many different libraries available, but they all have in common that they need something

called a bootstrap server. This is the server (actually a comma separated list of servers) that allows

the client to bootstrap the communication with the Kafka cluster. The bootstrap server will be made

available to every container through the environment variable named KAFKA_BOOTSTRAP_SERVER .

Using a PostgreSQL database

Often an App will need to store some data (e.g., configuration data) which it can query at a later point.

To help serve this very common need, a PostgreSQL database can be automatically created as part of

https://kafka.apache.org/documentation/#intro_concepts_and_terms
https://kafka.apache.org/documentation/#topicconfigs_cleanup.policy
https://kafka.apache.org/documentation/#topicconfigs_retention.ms
https://kafka.apache.org/documentation/#topicconfigs_retention.bytes
https://kafka.apache.org/documentation/#topicconfigs_segment.ms
https://kafka.apache.org/documentation/#topicconfigs_segment.bytes

installing an App. We simply add a databases section to our app definition file like shown below. All we

need to provide is just the name of the database to create.

databases:

 postgresql:

 name: "my-realm.my-db"

The prefix my-realm must match the value of the realm top-level property. This naming scheme will

be enforced by the app-builder and has the purpose of avoiding naming conflicts between databases

created within different realms. The connection details will be available to every container deployed by

the App through the following environment variables.

PGDB_HOST : The hostname of the PostgreSQL database cluster service.

PGDB_PORT : The port number of the PostgreSQL database cluster service.

PGDB_DBNAME : The name of the database.

PGDB_USERNAME : The username needed when connecting to the database.

PGDB_PASSWORD : The password needed when connecting to the database.

PGDB_URI : The complete PostgreSQL connection string needed when working with

the database.

Optionally, we can also provide a schema (an array of SQL scripts) to apply on the newly created

database. We can do this by providing the schema inline as shown below using the schema field.

databases:

 postgresql:

 name: "my-realm.my-app-db"

 schema:

 - |-

 create table if not exists tasks (

 id serial primary key,

 description text not null

);

Or we can use the schemaFiles field, if it is preferred to have the schema in separate files. Note,

that the files must be placed inside files in the custom definitions directory (see the section on

Custom Definition).

databases:

 postgresql:

 name: "my-realm.my-app-db"

 schemaFiles:

 - "files/my-first-script.sql"

 - "files/my-second-script.sql"

When upgrading our App to a new version, the schema will be re-applied to the database and we can

thus here change our database layout as needed. All containers will be stopped before the schema is

applied and started again afterwards. Note that the provided SQL scripts are always executed in the

order they are listed.

When the App is uninstalled, the database is automatically deleted.

Working with persistent storage

Most Apps that need to store state should use an actual database (e.g., a PostgreSQL database) for

such a purpose. However, there are special cases where an App might need a persistent file storage

for storing data. For such use cases the app definition file allows us to define a persistent volume

which we can then mount into a container. If the system or container is restarted, the data will not be

lost.

Here is an example app definition file setting up a volume to be mounted into a container.

name: "app-using-storage"

realm: "my-realm"

version: 1.0.0

description: "An App that uses persistent storage"

prerequisites:

 systemVersion: ">=0.3.9"

volumes:

- name: my-volume

 size: 30Gi

 class: media

services:

- name: my-realm-my-service

 routes:

 - name: my-route

 port: 80

 targetPort: 80

 containers:

 - name: my-container

 image: sandbox.io/hello-world/webserver:1.2.2

 volumeMounts:

 - name: my-volume

 path: /mnt/data

Here we first define a volume named my-volume instructing the system to find an available disk with

a total capacity of at least 30Gi and which has been assigned the label media . Labels are assigned to

disks as part of the system configuration and provides a way to group disks (actually partitions) by

what kind of storage they are suitable for. The media label can as an example be assigned disks that

are suitable for storing media data (video and audio data). If no disk is found, the installation of the

App will fail.

In the example above, we mount the volume inside my-container at /mnt/data . Whatever the

container stores here will continue to exist also after a restart of the container. Note that two

containers can mount the same volume. Also note that a container which mounts a volume will be

locked to run on the server which has the physical disk backing up the storage. Thus, such a container

cannot be rescheduled automatically to run on another server in the system.

As shown earlier, we can use the volumes command to list the active volumes of an App and also

what physical disk they are mounted from.

Replicating service workloads

Pods are the smallest deployable units of computing that we can create. All containers of one service

are deployed as one pod. This makes them share storage and network resources. Specificially, all

containers of a service have the same IP address.

Below is an example service specification in an app definition file. Here the service will deploy two

containers together in one pod. Both containers are assigned the same IP address and thus must listen

on two different ports for incoming requests. In the example, we route both port 80 and port 81 to the

pod and we expect the two containers to serve these.

services:

- name: pub-my-realm-my-service

 replicas: 5

 routes:

 - name: my-route-1

 port: 80

 targetPort: 80

 - name: my-route-2

 port: 81

 targetPort: 81

 containers:

 - name: my-container-1

 image: sandbox.io/first-container:1.0.0

 ports:

 - name: web

 containerPort: 80

 - name: my-container-2

 image: sandbox.io/second-container:1.0.0

 ports:

 - name: api

 containerPort: 81

In the above example, we also specify the replicas field with a value of 5. This instructs the

scheduler that we want the pod with the two containers to be replicated 5 times. So, in all, we will

have 10 containers running in 5 different pods. When connecting to the service using the hostname

pub-my-realm-my-service , the traffic will be routed to a random one of the 5 pods.

When scheduling multiple pods, you can control how they are spread across the cluster by adding a

topologySpreadConstraints section to the service. Below is an example that will cause the pods to

be equally spread across all nodes in the cluster.

topologySpreadConstraints:

- maxSkew: 1

 topologyKey: kubernetes.io/hostname

 whenUnsatisfiable: ScheduleAnyway

The topologyKey defines what domain you want your pods to be spread across. It could be regions

(topology.kubernetes.io/region), zones (topology.kubernetes.io/zone), nodes

(kubernetes.io/hostname), or even custom labels, depending on your infrastructure needs. Nodes

that have a label with this key and identical values are considered to be in the same topology. We call

each instance of a topology a domain. The scheduler will try to put a balanced number of pods into

each domain. The maxSkew parameter controls the allowed imbalance between topology domains.

For instance, if you set maxSkew to 2, the difference in the number of pods between any two domains

should not be more than 2. It gives you some flexibility in distribution while still ensuring a reasonable

balance. Finally whenUnsatisfiable defines what should be done when the pod distribution rules

cannot be satisfied. There are two options: ScheduleAnyway and DoNotSchedule .

Sometimes, it is important that we have exactly one pod per node in the cluster. If a node is added, a

new pod should automatically be scheduled. Likewise, if a node is removed, the pod running on that

node should be stopped and removed. To support this usecase, we can set the replicas field to

OnePerNode .

When replicating with OnePerNode , it can be useful to enable traffic restrictions to only route traffic

to endpoints within the node the traffic originated from. This will avoid a round trip via the cluster

network and thus can help improve reliability and performance (network latency and throughput). We

do this by setting the internalTrafficPolicy to Local .

services:

- name: pub-my-realm-my-service

 replicas: OnePerNode

 internalTrafficPolicy: Local

 routes:

 - name: my-route

 port: 80

 targetPort: 80

 containers:

 - name: my-container

 image: sandbox.io/my-container:1.0.0

The default value of internalTrafficPolicy is Cluster .

Specifying App resources

App resources specify the compute resources (CPU, memory, GPU) that each container in your App will

request and be limited to when running in Kubernetes. This allows you to control how much of the

cluster’s resources your App can use, and helps ensure fair scheduling and stability.

You can define resource requests and limits for each container in your App definition file under the

resources section:

services:

- name: my-service

 containers:

 - name: my-container

 image: sandbox.io/hello-world/webserver:1.2.2

 resources:

 limits:

 cpu: "1"

 memory: "1Gi"

 gpu: "1"

 requests:

 cpu: "500m"

 memory: "512Mi"

 gpu: "1"

Requests are the minimum amount of resources a container is guaranteed, used for scheduling, while

limits are the maximum amount a container can use, preventing it from consuming excessive

resources and affecting others.

CPU

Format: "500m" (500 millicores, or 0.5 CPU), "1" (1 CPU core)

If not specified, defaults to 500m (limit) and 250m (request).

Memory

Format: "512Mi" , "1Gi" , "2Gi" (must use binary units: Ki, Mi, Gi, Ti, Pi, Ei)

If not specified, defaults to 512Mi (limit) and 256Mi (request).

GPU

Format: "1" , "2" (number of GPUs, optional)

Only set if your workload requires GPU resources.

Note that if you omit the resources section, the default values will be used. It is important that

appropriate requests and limits are configured to help the scheduler run your containers efficiently

and preventing resource contention.

GPU resources are only available if your cluster supports them (e.g., with NVIDIA GPUs).

For more details, see the Kubernetes documentation on resource management

Routing ingress to service

We have seen how an App can define a service and expose it so that other services inside the system

can connect to it. However, if we want to access one of these services from outside the system, then

we need set up a specific rule that allows this. We use the term ingress for traffic coming from the

outside and entering the system. Ingress will always arrive through the system IP address and then be

routed to a specific service. Exposing a Web page or REST API to the outside world are typical

examples for which ingress is needed.

Below is shown an example expanding a given route to also allow ingress traffic to reach a service.

Specifically, all HTTP requests sent to the system IP address (or system host name) with root path

/xp/hello-world will here be routed to my-realm-my-service .

name: "app-exposing-endpoint"

realm: "my-realm"

version: 1.0.0

description: "An App that exposes an endpoint at /my-webpage"

prerequisites:

 systemVersion: ">=0.3.9"

services:

- name: my-realm-my-service

 routes:

 - name: my-route

 port: 80

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

 targetPort: 80

 ingress:

 rootPath: "/xp/hello-world"

 rules:

 - path: "/"

 scopes: ["managementserver"]

 containers:

 - name: my-container

 image: sandbox.io/hello-world/webserver:1.2.2

We define a rule that will forward all sub paths of /xp/hello-world to my-realm-my-service . The

path will be rewritten in the process to strip away the specified rootPath . So, a request to

/xp/hello-world/index.html will reach the service with path /index.html and have the X-

Forwarded-Prefix header field set to original request path. Also, in the example above, we require

that all requests are authorized to have access to the managementserver scope. The request must

thus in the authorization header provide an access token that has been issued by the XProtect Identity

Provider and that has access to the scope named managementserver . If this is not the case, the

request will be denied before routed to the service. If we leave out scopes , then authorization is

disabled and no access token is required. Also note, that we above expose a service that is not public

(it's name does not start with pub-). This means that even though we exposed the service outside

the cluster, it cannot be accessed directly inside the cluster from services in other realms.

We structure ingress traffic and how to specify the rootPath by three different usecases; an

experience, an MFE and an API. An experience is a webpage that an end-user might be interested in

visiting, perpaphs by simply writing the URL in the browser. The rootPath for an experience is for

this reason kept fairly open only requiring it not to start with /mfe , /api or /legacy .

An MFE (or microfrontend) is a UI component that can be re-used by multiple experiences. Here the

rootPath must match the pattern /mfe/<realm>/<name> , where the <realm> is that of the App

exposing the microfrontend and the <name> is free to choose. Note, that we can expose both the MFE

itself (main.js) and an associated BFF (backend for frontend) through the same service by setting up

individual rules.

ingress:

 rootPath: "/mfe/my-realm/my-mfe"

 rules:

 - path: "/main.js"

 - path: "/api/"

 scopes: ["managementserver"]

Finally, an API (e.g., a REST API) offered by a service can be exposed by having the rootPath match

the pattern /api/<realm>/<name> . Here, the <realm> is that of the App exposing the service and

the <name> is free to choose but recommended to follow that of the service. So, if we have a service

named pub-my-realm-my-service then it is good pratice to expose it using the path /api/my-

realm/my-service .

Importing a Grafana dashboard

A Grafana dashboard is a visual interface that displays data from various sources in a customizable

way. It's essentially a collection of panels, each showing a specific piece of information, like graphs,

charts, or tables, arranged to provide a comprehensive view of your system's health and performance.

We can import one or more dashboards to Grafana by adding a dashboards section simliar to the

one shown below.

dashboards:

 grafana:

 import:

 - "files/my-first-dashboard.json"

 - "files/my-second-dashboard.json"

When the App is installed (and upgraded), the two dashboards will automatically be imported into

Grafana. Note, that the files must be placed inside files in the custom definitions directory (see the

section on Custom Definition). When the App is uninstalled, the dashboards are likewise deleted from

Grafana.

The specified files are subject to Jinja template rendering. This means you can use values from the App

definition file inside the dashboards. As an example, {{ name }} will expand to the name of the App.

Since Grafana dashboards use the same notation for variables, this can cause problems. To avoid any

template rendering, prefix and suffix you files with respecitively {%- raw -%} and {%- endraw -%} .

Collecting metrics from a container using Prometheus

Prometheus is an open-source monitoring and alerting toolkit that collects and stores time-series data.

It's widely used in cloud-native environments, especially with Kubernetes, for monitoring applications

and infrastructure. Prometheus works by scraping metrics from target systems and storing them with

timestamps, allowing for powerful querying and alerting.

We also use Prometheus to collect metrics from Apps. Prometheus will connect to each App with

regular intervals and ask the App for the current value of its metrics. Typically, your App would

implement an HTTP endpoint hosting its metrics with path /metrics . There are several client

libraries that can help you implement such an endpoint; e.g., for golang, you can use the following

library https://github.com/prometheus/client_golang.

To let Prometheus know that it should scrape such an endpoint, you must name the relevant container

port app-metrics . Here is an example of how to specify this for a given container. Specificially, with

this example, Prometheus will start collecting metrics from the container using HTTP requests for

http://<cluster-ip-of-pod>:9100/metrics .

containers:

- name: my-container

 image: sandbox.io/hello-world/webserver:1.2.2

 ports:

 - name: app-metrics

 containerPort: 9100

Extending client applications with Microfrontends

A microfrontend is a web development architectural approach where a large frontend application is

broken down into smaller, independent, and deployable modules or microfrontends. These modules

are often developed and maintained by separate teams. The shell (or container) is the overarching

application that loads and orchestrates these microfrontends, providing a unified user interface and

handling navigation and shared functionality.

https://github.com/prometheus/client_golang

An App can expose a microfrontend (MFE) to the shell by adding a registration similar to what is shown

below.

microfrontends:

- id: "6933780b-0b1f-457c-9e62-232958ecd1d3"

 path: "/mfe/my-realm/maps/main.js"

 version: 2.0.2

 namespace: "my-realm-maps"

 name: "my-realm-maps"

 audience:

 requiredShellApi: ">=1.0.2"

 requiredPermissions: ["maps.view", "maps.manage"]

 targetExperiences: ["administrator"]

 targetApplications: ["management-client"]

 metadata:

 module: "main"

 bundler: "webpack"

 framework: "react"

The path must locate the main.js file of the microfrontend and it must start with /mfe/<realm>/ ,

where the <realm> is that of the App exposing the microfrontend. The entire path /mfe/my-

realm/maps/main.js must be exposed for ingress, so that a request for this file from the shell will

reach the container serving the file. Here is an example of how such a service definition could look

like.

services:

- name: my-realm-my-service

 routes:

 - name: my-route

 port: 80

 targetPort: 80

 ingress:

 rootPath: "/mfe/my-realm/maps"

 redirectPath: "/"

 rules:

 - path: "/main.js"

 - path: "/api/"

 containers:

 - name: my-container

 image: sandbox.io/my-app/my-service:1.0.0

Note, that we also here allow requests on /mfe/my-realm/maps/api/... to reach the container.

Basically, this is to allow the microfrontend to make API calls to its BFF (backend-for-frontend). Instead

of a single, general-purpose backend serving all clients, BFFs tailor the backend logic and data to the

unique needs of each frontend. This approach optimizes performance, simplifies frontend

development, and enhances the overall user experience.

Going back to the microfrontends section, we have for each microfrontend an audience section

that identifies for whom it is designed and in which context it is intended to be used. The

requiredShellAPI and requiredPermissions specify respectively the minimum shell API version

and the permissions of the audience that are required for the microfrontend to be loaded. With

targetExperiences and targetApplications , the audience of the microfrontend can be made

more specific. Possible values of an experience are operator , administrator , integrator ,

supporter and developer . For applications, possible values are management-client , smart-

client and web-client .

Finally, there is a metadata section that the shell will use for deciding where and how to render the

microfrontend. The ownership of what can go into the metadata section belongs to the shell and will

evolve as newer versions of the shell becomes available. See the shell api documentation for more

details.

Environment variables and command line arguments

In the App definition file, we can define environment variables for each container. We do this by

expanding each container definition with an env section as shown below.

containers:

- name: my-container

 image: sandbox.io/hello-world/webserver:1.2.2

 env:

 - name: MY_FIRST_ENVIRONMENT_VARIABLE

 value: "The value of my first environment variable"

 - name: MY_SECOND_ENVIRONMENT_VARIABLE

 value: "The value of my second environment variable"

All containers have the following set of predefined environment variables that we use.

APP_NAME : The name of the App

APP_REALM : The realm of the App

APP_VERSION : The version of the App

SYSTEM_IP : The external IP address of the System

SYSTEM_NAME : The display name of the System

SYSTEM_UUID : The unqiue ID of the System

SYSTEM_IDENTITY_PROVIDER : The URL of the Identity Provider of the System

LEGACY_MANAGEMENT_SERVER : The hostname of the Management Server in XProtect

LEGACY_USE_TLS : Whether legacy system is configured to use TLS

(true/false)

For setting command line arguments, the App definition file can be extended with an args section

which is basically a list of command line arguments that will be passed on to the container.

containers:

- name: my-container

 image: sandbox.io/hello-world/webserver:1.2.2

 args: ["my-first-command-line-argument", "my-second-command-line-argument"]

App values

App values are named values that we can define in the App definition file, which can be changed at

the time of installation. Since they cannot be set when installing an App from the App Center, they are

mostly useful for testing and debugging purposes. Below is shown a simple example using an App

value to control the log level of a web server.

name: "app-using-app-values"

realm: "my-realm"

version: 1.0.0

description: "An App that allows you to control the log level with an App value"

prerequisites:

 systemVersion: ">=0.3.9"

values:

 logLevel: error

services:

- name: my-realm-my-service

 routes:

 - name: my-route

 port: 80

 targetPort: 80

 containers:

 - name: my-container

 image: sandbox.io/hello-world/webserver:1.2.2

 args: ["httpd-foreground", "-e", "{{ .Values.logLevel }}"]

We define a new section named values which is a dictionary of named values. Specifically, we here

have one value named logLevel which by default is set to error . When running the web server

(httpd-foreground) in the container, we provide the command line arguments -e and {{

.Values.logLevel }} . At the time of installation, the argument {{ .Values.logLevel }} will

expand to the value that we specified for logLevel in the values section. When installing the App

through the App Center, the error log level will thus be used. However, this can be overwritten if

installing the App using the app-builder. As an example, if we want to instead use the debug level,

we can run the following command (the install-from-file command works the same way)

./app-builder.sh -f app-using-app-values.yaml install-from-repo --set logLevel=debug

Note that the we don't need to uninstall the App first if it is already installed. We can thus keep

running the above command with different values and the container will automatically be restarted

using the new value.

Custom definitions

Sometimes, the features supported by the App definition file is not enough for our App. In this case,

we can provide our own custom definitions and control in much more detail how the App gets

deployed. However, this also requires a much greater understanding of Kubernetes and Helm Charts.

Custom definitions are provided through a special directory that we can specify on the command line

with the -c option.

App Builder - Building your own App for the App Center

Usage: app-builder [options] <command>

Options:

 -h This message

 -f <file> App YAML definition file to use; default is app-definition.yaml

 -c <directory> Directory with custom definitions; default is the YAML definition

file without file extension

 -o <directory> Directory to store packaged Helm Chart of App; default is current

directory

The structure of the folder must match that of a Helm Chart and the files will be merged in on top of

the files generated by the App builder before the final package is built. All files with the extension

.jinja will be rendered by the jinja2 template engine before copied and the resulting file will have

its .jinja extension removed from its name. The directory named files is treated in a special

way in that it is not being copied / rendered into the final package. This directory can be used for files

that are only needed during the template rendering phase and not directly in the final package.

